性能概览:

什么是 s3?

s3 框架
s3 是一个用于训练检索增强生成(RAG)搜索代理的简单而强大的框架。它教会语言模型如何更有效地进行搜索——无需更改生成器本身。通过仅关注搜索组件,s3 用远少于以往方法的数据实现了在 QA 任务上的强劲性能。它具有模块化、高效的特点,并且可以与任何黑盒 LLM 无缝协作。
目录
📦 安装
搜索器与生成器环境
conda create -n s3 python=3.9
install torch [or you can skip this step and let vllm to install the correct version for you]
pip install torch==2.4.0 --index-url https://download.pytorch.org/whl/cu121
install vllm
pip3 install vllm==0.6.3 # or you can install 0.5.4, 0.4.2 and 0.3.1
pip3 install rayverl
cd code
pip install -e .flash attention 2
pip3 install flash-attn --no-build-isolationwe use pyserini for efficient retrieval and evaluation
pip install pyserini # the version we used is 0.22.1quality of life
pip install wandb IPython matplotlib huggingface_hub
检索器环境conda create -n ret python=3.10
conda activate retconda install pytorch==2.4.0 torchvision==0.19.0 torchaudio==2.4.0 pytorch-cuda=12.1 -c pytorch -c nvidia
pip install transformers datasets pyserini
conda install -c pytorch -c nvidia faiss-gpu=1.8.0
pip install uvicorn fastapi
💡 准备工作
下载索引和语料库python scripts/download.py --save_path $save_path
cat $save_path/part_* > $save_path/e5_Flat.index
gzip -d $save_path/wiki-18.jsonl.gz预计算 Naïve RAG 初始化(或者你可以在这里下载我们处理过的数据:huggingface)
# deploy retriever
bash scripts/deploy_retriever/retrieval_launch.sh # or scripts/deploy_retriever/retrieval_launch_mirage.sh for MedCorp corpus.
deploy generator
bash generator_llms/host.sh # modify tensor-parallel-size to the number of GPUs you use
run precompute
bash scripts/precompute.sh # this step will take a while, as it will precompute the naïve RAG Cache for training
🏋️ 运行训练
此步骤用于S3的训练# deploy retriever
bash scripts/deploy_retriever/retrieval_launch.sh
deploy generator
bash generator_llms/host.sh
run training
bash scripts/train/train_s3.sh
🔍 运行搜索/检索
此步骤用于s3 / 基线的上下文收集s3
# deploy retriever
bash scripts/deploy_retriever/retrieval_launch.sh
run s3 inference
bash scripts/s3_inference/evaluate-8-3-3.sh
基线
RAG
bash scripts/deploy_retriever/retrieval_launch.sh # or retrieval_launch_bm25.sh # deploy retriever
bash scripts/baselines/rag.sh # run RAG
深度检索bash retrieval_launch_bm25.sh # deploy BM25 Model
bash generator_llms/deepretrieval.sh # deploy DeepRetrieval Model
bash scripts/baselines/deepretrieval.sh # run DeepRetrieval Query Rewriting + Retrieval搜索-R1
bash retrieval_launch.sh # deploy e5 retriever
bash scripts/baselines/search_r1.sh # run Search-R1IRCoT
bash retrieval_launch.sh # deploy e5 retriever
python scripts/baselines/ircot.py搜索-o1
bash retrieval_launch.sh # deploy e5 retriever
bash scripts/baselines/search_o1.sh # run Search-o1
📈 运行评估
此步骤用于评估 s3 / 基线bash scripts/evaluation/run.sh问答
定制数据?
如果您想在自己的语料库/数据集上测试 s3,可以参考此提交,了解如何构建自己的流程:commit 8420538复现结果?
已经有多位开发者成功复现了我们的结果。如果您有疑问或遇到问题,欢迎提交 issue——我们很乐意提供详细指导(参见此示例)。虽然自行复现模型其实很简单——我们实际上推荐从零开始训练,因为评估往往比训练更耗时——但我们也提供了一个参考模型检查点:s3-8-3-3-20steps,训练时间约为一小时。
鸣谢
我们要感谢以下项目: verl, RAGEN, Search-R1, DeepRetrieval, PySerini。引用
@article{jiang2025s3,
title={s3: You Don't Need That Much Data to Train a Search Agent via RL},
author={Jiang, Pengcheng and Xu, Xueqiang and Lin, Jiacheng and Xiao, Jinfeng and Wang, Zifeng and Sun, Jimeng and Han, Jiawei},
journal={arXiv preprint arXiv:2505.14146},
year={2025}
}
感谢您对我们工作的关注!--- Tranlated By Open Ai Tx | Last indexed: 2025-10-06 ---