Web Analytics

proxyless-llm-websearch

⭐ 122 stars Traditional Chinese by itshyao

🌐 語言

🧠 無需代理的LLM網路搜尋引擎

一個無需代理的多搜尋引擎 LLM 網路檢索工具,支援 URL 內容解析與網頁爬取,結合 LangGraphLangGraph-MCP 實現模組化智能代理鏈路。專為大型語言模型外部知識調用場景而設計,支援 Playwright + Crawl4AI 網頁獲取與解析,支援非同步並發、內容切片與重排過濾。

🚀 更新日誌

✨ 特性一覽

workflow

framework

⚡ 快速開始

克隆倉庫

git clone https://github.com/itshyao/proxyless-llm-websearch.git
cd proxyless-llm-websearch

安裝依賴

pip install -r requirements.txt
python -m playwright install

環境變數配置

# 百炼llm
OPENAI_BASE_URL=https://dashscope.aliyuncs.com/compatible-mode/v1
OPENAI_API_KEY=sk-xxx
MODEL_NAME=qwen-plus-latest

百炼embedding

EMBEDDING_BASE_URL=https://dashscope.aliyuncs.com/compatible-mode/v1 EMBEDDING_API_KEY=sk-xxx EMBEDDING_MODEL_NAME=text-embedding-v4

百炼reranker

RERANK_BASE_URL=https://dashscope.aliyuncs.com/compatible-mode/v1 RERANK_API_KEY=sk-xxx RERANK_MODEL=gte-rerank-v2

Langgraph-Agent

#### 演示

python agent/demo.py

#### API 服務

python agent/api_serve.py

import requests

url = "http://localhost:8800/search"

data = { "question": "广州今日天气", "engine": "bing", "split": { "chunk_size": 512, "chunk_overlap": 128 }, "rerank": { "top_k": 5 } }

try: response = requests.post( url, json=data )

if response.status_code == 200: print("✅ 请求成功!") print("响应内容:", response.json()) else: print(f"❌ 请求失败,状态码:{response.status_code}") print("错误信息:", response.text)

except requests.exceptions.RequestException as e: print(f"⚠️ 请求异常:{str(e)}")

#### Gradio

python agent/gradio_demo.py

gradio

gradio

#### docker

docker-compose -f docker-compose-ag.yml up -d --build

Langgrph-MCP

#### 啟動MCP服務

python mcp/websearch.py

#### 示範

python mcp/demo.py

#### API 服務

python mcp/api_serve.py

import requests

url = "http://localhost:8800/search"

data = { "question": "广州今日天气" }

try: response = requests.post( url, json=data )

if response.status_code == 200: print("✅ 请求成功!") print("响应内容:", response.json()) else: print(f"❌ 请求失败,状态码:{response.status_code}") print("错误信息:", response.text)

except requests.exceptions.RequestException as e: print(f"⚠️ 请求异常:{str(e)}")

#### docker

docker-compose -f docker-compose-mcp.yml up -d --build

自訂模組

#### 自訂分塊

from typing import Optional, List

class YourSplitter: def __init__(self, text: str, chunk_size: int = 512, chunk_overlap: int = 128): self.text = text self.chunk_size = chunk_size self.chunk_overlap = chunk_overlap

def split_text(self, text: Optional[str] = None) -> List: # TODO: implement splitting logic return ["your chunk"]

#### 自訂重排

from typing import List, Union, Tuple

class YourReranker: async def get_reranked_documents( self, query: Union[str, List[str]], documents: List[str], ) -> Union[ Tuple[List[str]], Tuple[List[int]], ]: return ["your chunk"], ["chunk index"]

🔍 與線上網路檢索測試對比

我們將本項目與一些主流的線上 API 進行對比,評估其在複雜問題下的表現。

🔥 數據集

🧑‍🏫 對比結果

| 搜尋引擎/系統 | ✅ 正確 | ❌ 錯誤 | ⚠️ 部分正確 | | -------------- | ----------| ------------| ---------------------| | 火山方舟 | 5.00% | 72.21% | 22.79% | | 百煉 | 9.85% | 62.79% | 27.35% | | Our | 19.85% | 47.94% | 32.06% |

🙏 致謝

本項目部分功能得益於以下開源項目的支持與啟發,特此致謝:

--- Tranlated By Open Ai Tx | Last indexed: 2025-09-08 ---