Web Analytics

proxyless-llm-websearch

⭐ 122 stars Simplified Chinese by itshyao

🌐 语言

🧠 无需代理的LLM网络搜索引擎

一个无需代理的多搜索引擎 LLM 网络检索工具,支持 URL 内容解析和网页爬取,结合 LangGraphLangGraph-MCP 实现模块化智能体链路。专为大语言模型的外部知识调用场景而设计,支持 Playwright + Crawl4AI 网页获取与解析,支持异步并发、内容切片与重排过滤。

🚀 更新日志

✨ 特性一览

workflow

framework

⚡ 快速开始

克隆仓库

git clone https://github.com/itshyao/proxyless-llm-websearch.git
cd proxyless-llm-websearch

安装依赖

pip install -r requirements.txt
python -m playwright install

环境变量配置

# 百炼llm
OPENAI_BASE_URL=https://dashscope.aliyuncs.com/compatible-mode/v1
OPENAI_API_KEY=sk-xxx
MODEL_NAME=qwen-plus-latest

百炼embedding

EMBEDDING_BASE_URL=https://dashscope.aliyuncs.com/compatible-mode/v1 EMBEDDING_API_KEY=sk-xxx EMBEDDING_MODEL_NAME=text-embedding-v4

百炼reranker

RERANK_BASE_URL=https://dashscope.aliyuncs.com/compatible-mode/v1 RERANK_API_KEY=sk-xxx RERANK_MODEL=gte-rerank-v2

Langgraph-Agent

#### 演示

python agent/demo.py

#### API服务

python agent/api_serve.py

import requests

url = "http://localhost:8800/search"

data = { "question": "广州今日天气", "engine": "bing", "split": { "chunk_size": 512, "chunk_overlap": 128 }, "rerank": { "top_k": 5 } }

try: response = requests.post( url, json=data )

if response.status_code == 200: print("✅ 请求成功!") print("响应内容:", response.json()) else: print(f"❌ 请求失败,状态码:{response.status_code}") print("错误信息:", response.text)

except requests.exceptions.RequestException as e: print(f"⚠️ 请求异常:{str(e)}")

#### Gradio

python agent/gradio_demo.py

gradio

gradio

#### docker

docker-compose -f docker-compose-ag.yml up -d --build

Langgrph-MCP

#### 启动MCP服务

python mcp/websearch.py

#### 演示

python mcp/demo.py

#### API服务

python mcp/api_serve.py

import requests

url = "http://localhost:8800/search"

data = { "question": "广州今日天气" }

try: response = requests.post( url, json=data )

if response.status_code == 200: print("✅ 请求成功!") print("响应内容:", response.json()) else: print(f"❌ 请求失败,状态码:{response.status_code}") print("错误信息:", response.text)

except requests.exceptions.RequestException as e: print(f"⚠️ 请求异常:{str(e)}")

#### docker

docker-compose -f docker-compose-mcp.yml up -d --build

自定义模块

#### 自定义分块

from typing import Optional, List

class YourSplitter: def __init__(self, text: str, chunk_size: int = 512, chunk_overlap: int = 128): self.text = text self.chunk_size = chunk_size self.chunk_overlap = chunk_overlap

def split_text(self, text: Optional[str] = None) -> List: # TODO: implement splitting logic return ["your chunk"]

#### 自定义重排

from typing import List, Union, Tuple

class YourReranker: async def get_reranked_documents( self, query: Union[str, List[str]], documents: List[str], ) -> Union[ Tuple[List[str]], Tuple[List[int]], ]: return ["your chunk"], ["chunk index"]

🔍 与线上网络检索测试对比

我们将项目与一些主流的在线 API 进行对比,评估了其在复杂问题下的表现。

🔥 数据集

🧑‍🏫 对比结果

| 搜索引擎/系统 | ✅ 正确 | ❌ 错误 | ⚠️ 部分正确 | | -------------- | --------- | ----------- | ------------------- | | 火山方舟 | 5.00% | 72.21% | 22.79% | | 百炼 | 9.85% | 62.79% | 27.35% | | 我们的 | 19.85% | 47.94% | 32.06% |

🙏 致谢

本项目部分功能得益于以下开源项目的支持与启发,特此致谢:

--- Tranlated By Open Ai Tx | Last indexed: 2025-09-08 ---