Web Analytics

ACEBench

⭐ 148 stars French by chenchen0103

ACEBench : Qui remporte le point de match dans l'utilisation des outils ?

📃 Article  ·  🏆 Classement (Mise à jour continue)

Anglais | 中文

📚 Contenu

---

🛠️ Mises à jour [[Retour en haut]](#content)

[2025.10.29]

1 Nous avons corrigé les réponses possibles dans les ensembles de données normal_atom_enum_9, normal_atom_number_17, et normal_atom_list_34.

📘 1\. Résumé [[Retour en haut]](#content)

Large Language Models (LLMs) have demonstrated significant potential in decision-making and reasoning, particularly when integrated with various tools to effectively solve complex problems. However, existing benchmarks for evaluating LLMs' tool usage face several limitations: (1) limited evaluation scenarios, often lacking assessments in real multi-turn dialogue contexts; (2) narrow evaluation dimensions, with insufficient detailed assessments of how LLMs use tools; and (3) reliance on LLMs or real API executions for evaluation, which introduces significant overhead. To address these challenges, we introduce ACEBench, a comprehensive benchmark for assessing tool usage in LLMs. ACEBench categorizes data into three primary types based on evaluation methodology: Normal, Special, and Agent. "Normal" evaluates tool usage in basic scenarios; "Special" evaluates tool usage in situations with ambiguous or incomplete instructions; "Agent" evaluates tool usage through multi-agent interactions to simulate real-world, multi-turn dialogues. We conducted extensive experiments using ACEBench, analyzing various LLMs in-depth and providing a more granular examination of error causes across different data types.


📊 2. Analyse des données de référence [[Retour en haut]](#content)

Domaine des API

Répartition des domaines API

Composition des données

Composition des données

🏆 3\. Classement [[Retour en haut]](#content)

| Modèle | normal | spécial | agent | global | | ------------------------------------- | ------ | ------- | ----- | ------- | | modèle propriétaire | | gpt-4o-2024-11-20 | 0.927 | 0.933 | 0.715 | 0.896 | | gpt-4-turbo-2024-04-09 | 0.917 | 0.913 | 0.725 | 0.886 | | qwen-max | 0.887 | 0.740 | 0.685 | 0.817 | | o1-preview | 0.830 | 0.793 | 0.735 | 0.806 | | deepseek-chat | 0.926 | 0.733 | 0.350 | 0.785 | | gpt-4o-mini-2024-07-18 | 0.834 | 0.813 | 0.390 | 0.760 | | claude-3-5-sonnet-20241022 | 0.835 | 0.820 | 0.350 | 0.756 | | gemini-1.5-pro | 0.822 | 0.800 | 0.250 | 0.728 | | o1-mini | 0.774 | 0.673 | 0.610 | 0.722 | | doubao-pro-32k | 0.750 | 0.593 | 0.235 | 0.628 | | modèle open-source | | Qwen2.5-Coder-32B-Instruct-local | 0.908 | 0.813 | 0.715 | 0.853 | | Qwen2.5-32B-Instruct-local | 0.852 | 0.747 | 0.690 | 0.799 | | Qwen2.5-72B-Instruct-local | 0.873 | 0.773 | 0.525 | 0.793 | | Qwen2.5-Coder-14B-Instruct-local | 0.868 | 0.647 | 0.525 | 0.756 | | Qwen2.5-14B-Instruct-local | 0.790 | 0.540 | 0.250 | 0.640 | | Llama-3.1-70B-Instruct-local | 0.753 | 0.473 | 0.435 | 0.629 | | Qwen2.5-7B-Instruct-local | 0.759 | 0.447 | 0.125 | 0.578 | | DeepSeek-Coder-V2-Lite-Instruct-local | 0.688 | 0.413 | 0.015 | 0.511 | | Qwen2.5-Coder-7B-Instruct-local | 0.735 | 0.193 | 0.125 | 0.496 | | watt-tool-8B-local | 0.763 | 0.100 | 0.040 | 0.474 | | ToolACE-8B-local | 0.782 | 0.013 | 0.040 | 0.462 | | Hammer2.1-7b-local | 0.627 | 0.260 | 0.185 | 0.461 | | Meta-Llama-3.1-8B-Instruct-local | 0.450 | 0.267 | 0.040 | 0.338 | | Qwen2.5-Coder-3B-Instruct-local | 0.495 | 0.100 | 0.065 | 0.323 | | Phi-3-mini-128k-instruct-local | 0.389 | 0.253 | 0.015 | 0.295 | | Qwen2.5-3B-Instruct-local | 0.408 | 0.127 | 0.065 | 0.280 | | Llama-3.2-3B-Instruct-local | 0.327 | 0.100 | 0.000 | 0.216 | | xLAM-7b-r-local | 0.187 | 0.013 | 0.075 | 0.123 | | Hammer2.1-3b-local | 0.118 | 0.013 | 0.015 | 0.074 |


🛠️ 4\. Configuration [[Retour en haut]](#content)

Exécutez la commande suivante pour installer les dépendances requises pour l'inférence et l'évaluation :

pip install -r requirements.txt


🗂️ 5\. Données [[Retour en haut]](#content)

Toutes les données sont stockées dans le répertoire data_all, divisées en parties anglaise et chinoise, situées respectivement dans les dossiers data_en et data_zh. Chaque dossier contient plusieurs fichiers JSON, nommés au format data_{category}.json, où category représente le type de données.

data_all/
├── possible_answer_en/        
│   ├── data_{normal}.json
│   ├── data_{special}.json
│   ├── data_{agent}.json
├── possible_answer_zh/        
│   ├── data_{normal}.json
│   ├── data_{special}.json
│   ├── data_{agent}.json
...

🧠 6\. Inférence [[Retour en haut]](#content)

6.1 Script d'inférence

Pour exécuter une inférence avec cmodels, utilisez le script generate.py. Ce script prend en charge divers modèles, catégories et langues.

Utilisation de base

python generate.py  --model   --model_path   
--category  --language  

Arguments :

6.2\. Exemples d'inférence

pour modèle propriétaire (closed-source)

python generate.py --model qwen-max --category test_all --language zh
pour modèle local

python generate.py --model Qwen2.5-3B-Instruct-local --model-path /mnt/nas/ckpt/Qwen2.5-3B-Instruct --category test_all --language zh

6.3\. Précautions

📈 7. Évaluation [[Retour en haut]](#content)

Pour évaluer les performances des modèles, utilisez le script eval_main.py. Ce script supporte diverses métriques d'évaluation et peut être utilisé pour les modèles open-source comme fermés.

Utilisation de base

python eval_main.py --model  --category  --language 

📄 Citation

Si vous trouvez notre article et nos ressources utiles, veuillez envisager de citer notre article :

@article{chen2025acebench,
  title={ACEBench: Who Wins the Match Point in Tool Learning?},
  author={Chen, Chen and Hao, Xinlong and Liu, Weiwen and Huang, Xu and Zeng, Xingshan and Yu, Shuai and Li, Dexun and Wang, Shuai and Gan, Weinan and Huang, Yuefeng and others},
  journal={arXiv preprint arXiv:2501.12851},
  year={2025}
}

--- Tranlated By Open Ai Tx | Last indexed: 2025-12-19 ---