Web Analytics

Semantic-Guided-Low-Light-Image-Enhancement

⭐ 126 stars Simplified Chinese by ShenZheng2000

语义引导的低光照图像增强

这是我们论文“语义引导的零样本学习用于低光照图像/视频增强”的官方Pytorch实现

更新

摘要

Low-light images challenge both human perceptions and computer vision algorithms. It is crucial to make algorithms robust to enlighten low-light images for computational photography and computer vision applications such as real-time detection and segmentation tasks. This paper proposes a semantic-guided zero-shot low-light enhancement network which is trained in the absence of paired images, unpaired datasets, and segmentation annotation. Firstly, we design an efficient enhancement factor extraction network using depthwise separable convolution. Secondly, we propose a recurrent image enhancement network for progressively enhancing the low-light image. Finally, we introduce an unsupervised semantic segmentation network for preserving the semantic information. Extensive experiments on various benchmark datasets and a low-light video demonstrate that our model outperforms the previous state-of-the-art qualitatively and quantitatively. We further discuss the benefits of the proposed method for low-light detection and segmentation.

模型架构

点击以下链接查看模型架构的 PDF 格式。

模型架构

样例结果

1. 低光视频帧

从左到右,从上到下:暗光,Retinex [1],KinD [2],EnlightenGAN [3],Zero-DCE [4],我们的结果。

2. 低光图像(真实场景)

从左到右,从上到下:暗光,PIE [5],LIME [6],Retinex [1],MBLLEN [7],KinD [2],Zero-DCE [4],我们的结果。

快速开始

1. 环境要求

2. 准备数据集

测试数据集

训练数据集

注意:如果你没有百度云账号,可以通过Google Drive下载训练和测试数据集。

准备完成后,数据文件夹应如下所示:

data/
├── test_data/
│   ├── lowCUT/
│   ├── BDD/
│   ├── Cityscapes/
│   ├── DICM/
│   ├── LIME/
│   ├── LOL/
│   ├── MEF/
│   ├── NPE/
│   └── VV/
└── train_data/
    └── ...

3. 从头开始训练

训练模型:
python train.py \
  --lowlight_images_path path/to/train_images \
  --snapshots_folder path/to/save_weights
示例(从头开始训练):

python train.py \
  --lowlight_images_path data/train_data \
  --snapshots_folder weight/

4. 恢复训练

从检查点恢复训练:

python train.py \
  --lowlight_images_path path/to/train_images \
  --snapshots_folder path/to/save_weights \
  --load_pretrain True \
  --pretrain_dir path/to/checkpoint.pth

示例(从 Epoch99.pth 恢复):

python train.py \
  --lowlight_images_path data/train_data \
  --snapshots_folder weight/ \
  --load_pretrain True \
  --pretrain_dir weight/Epoch99.pth

5. 测试

注意:请删除 data 文件夹中的所有 readme.txt 文件,以避免模型推理错误。

测试模型:

python test.py \
  --input_dir path/to/your_input_images \
  --weight_dir path/to/pretrained_model.pth \
  --test_dir path/to/output_folder 
示例:

python test.py \
  --input_dir data/test_data/lowCUT \
  --weight_dir weight/Epoch99.pth \
  --test_dir test_output

6. 视频测试

对于视频(MP4格式)上的模型测试,在终端运行:
bash test_video.sh

demo/make_video.py 中有五个用于视频测试的超参数。具体说明如下。

超参数

| 名称 | 类型 | 默认值 | |----------------------|-------|--------------------| | lowlight_images_path | str | data/train_data/ | | lr | float | 1e-3 | | weight_decay | float | 1e-3 | | grad_clip_norm | float | 0.1 | | num_epochs | int | 100 | | train_batch_size | int | 6 | | val_batch_size | int | 8 | | num_workers | int | 4 | | display_iter | int | 10 | | snapshot_iter | int | 10 | | scale_factor | int | 1 | | snapshots_folder | str | weight/ | | load_pretrain | bool | False | | pretrain_dir | str | weight/Epoch99.pth | | num_of_SegClass | int | 21 | | conv_type | str | dsc | | patch_size | int | 4 | | exp_level | float | 0.6 |

待办事项列表

其他

如有任何问题,请联系 zhengsh@kean.edu。本仓库大量基于 Zero-DCE。感谢分享代码!

引用

如果您觉得本仓库有帮助,请引用以下论文。
@inproceedings{zheng2022semantic,
  title={Semantic-guided zero-shot learning for low-light image/video enhancement},
  author={Zheng, Shen and Gupta, Gaurav},
  booktitle={Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision},
  pages={581--590},
  year={2022}
}

参考文献

[1] 魏晨等。“用于低光照增强的深度Retinex分解。”arXiv预印本 arXiv:1808.04560 (2018)。

[2] 张永华,张家湾,郭晓杰。“点亮黑暗:一种实用的低光照图像增强方法。”第27届ACM国际多媒体会议论文集,2019年。

[3] 姜一凡等。“Enlightengan:无配对监督的深度光照增强。”IEEE图像处理汇刊 30 (2021): 2340-2349。

[4] 郭春乐等。“零参考深度曲线估计用于低光照图像增强。”IEEE/CVF计算机视觉与模式识别会议论文集,2020年。

[5] 傅雪阳等。“一种同时估计光照和反射率的图像增强概率方法。”IEEE图像处理汇刊 24.12 (2015): 4965-4977。

[6] 郭晓杰,李瑜,凌海滨。“LIME:基于光照图估计的低光照图像增强。”IEEE图像处理汇刊 26.2 (2016): 982-993。

[7] 吕飞凡等。“MBLLEN:基于卷积神经网络的低光照图像/视频增强。”英国机器视觉大会,2018年。

--- Tranlated By Open Ai Tx | Last indexed: 2025-12-29 ---