Web Analytics

MoE-Adapters4CL

⭐ 257 stars Spanish by JiazuoYu

MoE-Adapters4CL

Código para el artículo "Impulsando el Aprendizaje Continuo de Modelos Visión-Lenguaje mediante Adaptadores de Mezcla de Expertos" CVPR2024.

Tabla de Contenidos

Resumen

Continual learning can empower vision-language models to continuously acquire new knowledge, without the need for access to the entire historical dataset. However, mitigating the performance degradation in large-scale models is non-trivial due to (i) parameter shifts throughout lifelong learning and (ii) significant computational burdens associated with full-model tuning. In this work, we present a parameter-efficient continual learning framework to alleviate long-term forgetting in incremental learning with vision-language models. Our approach involves the dynamic expansion of a pre-trained CLIP model, through the integration of Mixture-of-Experts (MoE) adapters in response to new tasks. To preserve the zero-shot recognition capability of vision-language models, we further introduce a Distribution Discriminative Auto-Selector (DDAS) that automatically routes in-distribution and out-of-distribution inputs to the MoE Adapter and the original CLIP, respectively. Through extensive experiments across various settings, our proposed method consistently outperforms previous state-of-the-art approaches while concurrently reducing parameter training burdens by 60%.

Enfoque

___ imagen de ejemplo

Instalación

conda create -n MoE_Adapters4CL python=3.9
conda activate MoE_Adapters4CL
conda install pytorch==2.1.0 torchvision==0.16.0 torchaudio==2.1.0 pytorch-cuda=11.8 -c pytorch -c nvidia
cd cil
pip install -r requirements.txt

Preparación de datos

Conjuntos de datos objetivo: Aircraft, Caltech101, CIFAR10, CIFAR100, DTD, EuroSAT, Flowers, Food, MNIST, OxfordPet, StanfordCars, SUN397, TinyImagenet.

Si tienes problemas con Caltech101, puedes referirte a issue#6.

Más detalles pueden consultarse en datasets.md de ZSCL. ¡Muchas gracias a ellos por su excelente trabajo!

Checkpoint del modelo

| | Modelo | Enlace | |------------------|----------------------------------------------------------------------|---------------------------------------------------------------------- | | full_shot_order1 | full_shot_order1_1000iters.pth | Baidu Disk / Google Drive | | few_shot_order1 | few_shot_order1_1000iters.pth | Baidu Disk / Google Drive |

MTCL

Etapa de prueba

Ejemplo:

Etapa de entrenamiento

Ejemplo:
  • Mover los checkpoints a MoE-Adapters4CL/ckpt
  • `cd MoE-Adapters4CL/mtil`
  • Ejecutar el script `bash srcipts/train/train_full_shot_router11_experts22_1000iters.sh`

Aprendizaje incremental por clases

Etapa de entrenamiento

Ejemplo:
  • `cd cil`
  • `bash run_cifar100-2-2.sh `

Citación

@inproceedings{yu2024boosting, title={Boosting continual learning of vision-language models via mixture-of-experts adapters}, author={Yu, Jiazuo and Zhuge, Yunzhi and Zhang, Lu and Hu, Ping and Wang, Dong and Lu, Huchuan and He, You}, booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition}, pages={23219--23230}, year={2024} }
``

Agradecimientos

Nuestro repositorio está basado en wise-ft, Continual-CLIP y ZSCL. Agradecemos a los autores por compartir sus códigos.

--- Tranlated By Open Ai Tx | Last indexed: 2025-12-04 ---