Web Analytics

unifloral

⭐ 184 stars Simplified Chinese by EmptyJackson

🌹 Unifloral:统一的离线强化学习

统一实现与严格评估离线强化学习——由Matthew JacksonUljad BerdicaJarek Liesen构建。

💡 代码理念

灵感来自 CORLCleanRL ——强烈推荐!

🤖 算法

我们提供两种类型的算法实现:

训练完成后,最终评估结果保存为 .npz 文件,位于 final_returns/,便于使用我们的评估协议进行分析。

所有脚本支持 D4RL,并使用 Weights & Biases 进行日志记录,配置文件以 WandB sweep 文件形式提供。

无模型方法

| 算法 | 独立实现 | 统一实现 | 附加 | | --- | --- | --- | --- | | BC | bc.py | unifloral/bc.yaml | - | | SAC-N | sac_n.py | unifloral/sac_n.yaml | [[ArXiv]](https://arxiv.org/abs/2110.01548) | | EDAC | edac.py | unifloral/edac.yaml | [[ArXiv]](https://arxiv.org/abs/2110.01548) | | CQL | cql.py | - | [[ArXiv]](https://arxiv.org/abs/2006.04779) | | IQL | iql.py | unifloral/iql.yaml | [[ArXiv]](https://arxiv.org/abs/2110.06169) | | TD3-BC | td3_bc.py | unifloral/td3_bc.yaml | [[ArXiv]](https://arxiv.org/abs/2106.06860) | | ReBRAC | rebrac.py | unifloral/rebrac.yaml | [[ArXiv]](https://arxiv.org/abs/2305.09836) | | TD3-AWR | - | unifloral/td3_awr.yaml | [[ArXiv]](https://arxiv.org/abs/2504.11453) |

基于模型

我们实现了一个用于动力学模型训练的单一脚本:dynamics.py,配置文件为dynamics.yaml

| 算法 | 独立版本 | 统一版本 | 额外资料 | | --- | --- | --- | --- | | MOPO | mopo.py | - | [[ArXiv]](https://arxiv.org/abs/2005.13239) | | MOReL | morel.py | - | [[ArXiv]](https://arxiv.org/abs/2005.05951) | | COMBO | combo.py | - | [[ArXiv]](https://arxiv.org/abs/2102.08363) | | MoBRAC | - | unifloral/mobrac.yaml | [[ArXiv]](https://arxiv.org/abs/2504.11453) |

更多新算法即将推出 👀

📊 评估

我们的评估脚本 (evaluation.py) 实现了论文中描述的协议,分析了UCB赌博机在一系列策略评估中的性能。

from evaluation import load_results_dataframe, bootstrap_bandit_trials
import jax.numpy as jnp

Load all results from the final_returns directory

df = load_results_dataframe("final_returns")

Run bandit trials with bootstrapped confidence intervals

results = bootstrap_bandit_trials( returns_array=jnp.array(policy_returns), # Shape: (num_policies, num_rollouts) num_subsample=8, # Number of policies to subsample num_repeats=1000, # Number of bandit trials max_pulls=200, # Maximum pulls per trial ucb_alpha=2.0, # UCB exploration coefficient n_bootstraps=1000, # Bootstrap samples for confidence intervals confidence=0.95 # Confidence level )

Access results

pulls = results["pulls"] # Number of pulls at each step means = results["estimated_bests_mean"] # Mean score of estimated best policy ci_low = results["estimated_bests_ci_low"] # Lower confidence bound ci_high = results["estimated_bests_ci_high"] # Upper confidence bound

📝 引用我们!

@misc{jackson2025clean,
      title={A Clean Slate for Offline Reinforcement Learning},
      author={Matthew Thomas Jackson and Uljad Berdica and Jarek Liesen and Shimon Whiteson and Jakob Nicolaus Foerster},
      year={2025},
      eprint={2504.11453},
      archivePrefix={arXiv},
      primaryClass={cs.LG},
      url={https://arxiv.org/abs/2504.11453},
}

--- Tranlated By Open Ai Tx | Last indexed: 2026-01-08 ---