Web Analytics

ChinaTravel

⭐ 0 stars English by Adopos

ChinaTravel: A Real-World Benchmark for Language Agents in Chinese Travel Planning

Official codebase for the paper "ChinaTravel: A Real-World Benchmark for Language Agents in Chinese Travel Planning".

Webpage Paper Dataset(Huggingface) Competition(TPC@IJCAI2025) Competition(TPC@AIC2025)

🏆 IJCAI 2025 Travel Planning Challenge (TPC@IJCAI)

We are proud to announce that ChinaTravel has been selected as the official benchmark for the Travel Planning Challenge (TPC) @ IJCAI 2025!

Official Competition Website: https://chinatravel-competition.github.io/IJCAI2025/

Participants are invited to develop novel agents that can tackle real-world travel planning scenarios under complex constraints. This competition will showcase state-of-the-art approaches in language agent research.

📝 ChangeLog

2025.09

2025.06

2025.05

2025.04

Implement the LLM-modulo pipeline with a ground-truth symbolic verifier. Based on methodology from: Paper: Robust Planning with Compound LLM Architectures: An LLM-Modulo Approach Codebase: https://github.com/Atharva-Gundawar/LLM-Modulo-prompts

🚀 Quick Start

⚙️ Setup

conda create -n chinatravel python=3.9  
conda activate chinatravel  
pip install -r requirements.txt  

Download Links: Google Drive, NJU Drive

bash download_llm.sh
wget https://cdn.deepseek.com/api-docs/deepseek_v3_tokenizer.zip -P chinatravel/local_llm/
unzip chinatravel/local_llm/deepseek_v3_tokenizer.zip -d chinatravel/local_llm/

▶️ Running

We support deepseek (official API from deepseek), gpt-4o (chatgpt-4o-latest), glm4-plus, and local inferences with Qwen (Qwen3-8B), llama, mistral (Mistral-7B-Instruct-v0.3), etc.

export OPENAI_API_KEY=""

python run_exp.py --splits easy --agent LLMNeSy --llm deepseek --oracle_translation python run_exp.py --splits medium --agent LLMNeSy --llm deepseek --oracle_translation python run_exp.py --splits human --agent LLMNeSy --llm deepseek --oracle_translation

python run_exp.py --splits human --agent LLMNeSy --llm Qwen3-8B --oracle_translation

python run_exp.py --splits human --agent LLMNeSy --llm deepseek python run_exp.py --splits human --agent LLMNeSy --llm Qwen3-8B

python run_exp.py --splits human --agent LLM-modulo --llm deepseek --refine_steps 10 --oracle_translation python run_exp.py --splits human --agent LLM-modulo --llm Qwen3-8B --refine_steps 10 --oracle_translation

Note:

  {
    "hard_logic_py": [
      "
      total_cost=0 
      for activity in allactivities(plan):
          total_cost+=activity_cost(activity)
              total_cost += innercity_transport_cost(activity_transports(activity))
      result=(total_cost<=1000)
      ", 
      "
      innercity_transport_set=set()
      for activity in allactivities(plan):
          if activity_transports(activity)!=[]:              
              innercity_transport_set.add(innercity_transport_type(activity_transports(activity)))
      result=(innercity_transport_set<={'taxi'})
      "
    ], 
    "hard_logic_nl": ["总预算为1800元", "市内交通选择taxi"], 
  }
  ``
  • The LLM-module method requires oracle_translation mode for its symbolic refinement process

📊 Evaluation

bash python eval_exp.py --splits human --method LLMNeSy_deepseek_oracletranslation python eval_exp.py --splits human --method LLMNeSy_deepseek python eval_exp.py --splits human --method LLM-modulo_deepseek_10steps_oracletranslation python eval_exp.py --splits human --method LLM-modulo_Qwen3-8B_10steps_oracletranslation

In TPC@IJCAI2025, the evaluation code is provided in the eval_tpc.py file. You can run the evaluation code as follows:

bash python eval_tpc.py --splits tpc_phase1 --method YOUR_METHOD_NAME

📚 Docs

Environment Constraints

🛠️ Advanced Development

1. Develop Your Own Agent Algorithm

To develop your own agent algorithm, you need to inherit the BaseAgent class from chinatravel/agent/base.py and add the logic for your algorithm to the init_agent function in chinatravel/agent/load_model.py. We provide an empty agent example named TPCAgent.

Steps:

  • Inherit the BaseAgent class: Create a new Python file in the chinatravel/agent directory and define your own agent class, inheriting from BaseAgent.
python:chinatravel/agent/your_agent.py from .base import BaseAgent

class YourAgent(BaseAgent): def __init__(self, kwargs): super().__init__(kwargs) # Initialization logic

def act(self, observation): # Implement the decision - making logic of the agent pass


  • Add code to the init_agent function: Open the chinatravel/agent/load_model.py file and add support for your new agent in the init_agent function.
python: def init_agent(kwargs): # ... existing code ... elif kwargs["method"] == "YourMethodName": agent = YourAgent( kwargs ) # ... existing code ... return agent

2. Develop Your Own Local LLM

To develop your own local large-language model (LLM), you need to inherit the AbstractLLM class from chinatravel/agent/llms.py and add the corresponding local LLM inference code in llms.py. We provide an empty LLM example named TPCLLM. Steps:

  • Inherit the AbstractLLM class: Define your own LLM class in the chinatravel/agent/llms.py file, inheriting from AbstractLLM.
python class YourLLM(AbstractLLM): def __init__(self): super().__init__() # Initialization logic self.name = "YourLLMName"

def _get_response(self, messages, one_line, json_mode): # Implement the response logic of the LLM response = "Your LLM response" if json_mode: # Handle JSON mode pass elif one_line: # Handle one - line mode response = response.split("\n")[0] return response


  • Add code to the init_agent function: Open the chinatravel/agent/load_model.py file and add support for your new llm in the init_llm function.
python: def init_llm(kwargs): # ... existing code ... elif llm_name == "glm4-plus": llm = YourLLM() # ... existing code ... return llm

3. Run Your Code Using Experiment Scripts

After completing the above development, you can use the experiment scripts to run your code.

Example of running:

bash python run_tpc.py --splits easy --agent TPCAgent --llm TPCLLM python run_exp.py --splits easy --agent YourMethodName --llm YourLLMName
The results will be saved in the results/YourMethodName_YourLLMName_xxx directory, e.g., results/TPCAgent_TPCLLM.

✉️ Contact

If you have any problems, please contact Jie-Jing Shao, Bo-Wen Zhang, Xiao-Wen Yang.

📌 Citation

If our paper or related resources prove valuable to your research, we kindly ask for citation.

@misc{shao2024chinatravelrealworldbenchmarklanguage, title={ChinaTravel: A Real-World Benchmark for Language Agents in Chinese Travel Planning}, author={Jie-Jing Shao and Xiao-Wen Yang and Bo-Wen Zhang and Baizhi Chen and Wen-Da Wei and Guohao Cai and Zhenhua Dong and Lan-Zhe Guo and Yu-feng Li}, year={2024}, eprint={2412.13682}, archivePrefix={arXiv}, primaryClass={cs.AI}, url={https://arxiv.org/abs/2412.13682}, }
`` English | 简体中文 | 繁體中文 | 日本語 | 한국어 | हिन्दी | ไทย | Français | Deutsch | Español | Italiano | Русский | Português | Nederlands | Polski | العربية | فارسی | Türkçe | Tiếng Việt | Bahasa Indonesia | অসমীয়া

--- Tranlated By Open Ai Tx | Last indexed: 2025-10-17 ---